単純ベイズ分類器のしくみ–Pythonコード例を使用

単純ベイズ分類器(NBC)は、シンプルでありながら強力な機械学習アルゴリズムです。それらは条件付き確率とベイズの定理に基づいています。

この投稿では、NBCの背後にある「トリック」について説明し、分類の問題を解決するために使用できる例を示します。

次のセクションでは、NBCの背後にある数学について説明します。数学に興味がない場合は、これらのセクションをスキップして、実装の部分に進んでください。

実装のセクションでは、簡単なNBCアルゴリズムを紹介します。次に、それを使用して分類の問題を解決します。タスクは、タイタニック号の特定の乗客が事故を生き延びたかどうかを判断することです。

条件付き確率

アルゴリズム自体について説明する前に、その背後にある簡単な数学について説明しましょう。条件付き確率とは何か、ベイズの定理を使用してそれを計算する方法を理解する必要があります。

6つの側面を持つ公正なサイコロについて考えてみてください。サイコロを振ったときに6が出る確率はどれくらいですか?それは簡単です、それは1/6です。6つの可能性があり、同様に可能性の高い結果がありますが、そのうちの1つだけに関心があります。だから、1/6です。

しかし、私がすでにダイスを転がしていて、結果が偶数であるとあなたに言うとどうなりますか?私たちが今6を持っている確率はどれくらいですか?

今回は、サイコロに偶数が3つしかないため、考えられる結果は3つだけです。私たちはまだそれらの結果の1つだけに関心があるので、今では確率が高くなっています:1/3。両方の場合の違いは何ですか?

最初のケースでは、結果に関する事前情報がありませんでした。したがって、考えられるすべての結果を考慮する必要がありました。

2番目のケースでは、結果は偶数であると言われたので、可能な結果のスペースを、通常の6面ダイに表示される3つの偶数に減らすことができました。

一般に、イベントAの確率を計算するとき、別のイベントBの発生を前提として、Bを指定したAの条件付き確率、またはBを指定したAの確率のみを計算していると言いP(A|B)ます。

たとえば、私たちが得た数が偶数であるとすると、6を得る確率は次のとおりP(Six|Even) = 1/3です。ここでは、Six6を取得するイベント、Even偶数を取得するイベントを示しています。

しかし、条件付き確率をどのように計算するのでしょうか?公式はありますか?

条件付き確率とベイズの定理を計算する方法

ここで、条件付き確率を計算するための式をいくつか示します。難しいことではないことをお約束します。後で説明する機械学習アルゴリズムの洞察を理解したい場合は重要です。

別のイベントBが発生した場合のイベントAの確率は、次のように計算できます。

P(A|B) = P(A,B)/P(B) 

ここで、P(A,B)はAとBの両方が同時に発生するP(B)確率を示し、はBの確率を示します。

P(B) > 0Bの発生が不可能な場合、Bが与えられたAの確率について話すことは意味がないため、必要であることに注意してください。

複数のイベントB1、B2、...、Bnが発生した場合、イベントAの確率を計算することもできます。

P(A|B1,B2,...,Bn) = P(A,B1,B2,...,Bn)/P(B1,B2,...,Bn) 

条件付き確率を計算する別の方法があります。このように、いわゆるベイズの定理があります。

P(A|B) = P(B|A)P(A)/P(B) P(A|B1,B2,...,Bn) = P(B1,B2,...,Bn|A)P(A)/P(B1,B2,...,Bn) 

イベントの発生順序をにすることにより、イベントBが与えられた場合のイベントAの確率を計算していることに注意してください。

ここで、イベントAが発生したと仮定し、イベントB(または2番目のより一般的な例ではイベントB1、B2、...、Bn)の確率を計算します。

この定理から導き出せる重要な事実は、を計算する式P(B1,B2,...,Bn,A)です。それは確率の連鎖律と呼ばれます。

P(B1,B2,...,Bn,A) = P(B1 | B2, B3, ..., Bn, A)P(B2,B3,...,Bn,A) = P(B1 | B2, B3, ..., Bn, A)P(B2 | B3, B4, ..., Bn, A)P(B3, B4, ..., Bn, A) = P(B1 | B2, B3, ..., Bn, A)P(B2 | B3, B4, ..., Bn, A)...P(Bn | A)P(A) 

それは醜い式ですね。ただし、状況によっては、回避策を講じて回避することができます。

アルゴリズムを理解するために知っておく必要のある最後の概念について話しましょう。

独立

私たちが話そうとしている最後の概念は独立です。イベントAとBは独立していると言います

P(A|B) = P(A) 

これは、イベントAの確率がイベントBの発生の影響を受けないことを意味しP(A,B) = P(A)P(B)ます。直接的な結果は次のとおりです。

平易な英語では、これは、AとBの両方が同時に発生する確率が、別々に発生するイベントAとBの確率の積に等しいことを意味します。

AとBが独立している場合、次のことも保持されます。

P(A,B|C) = P(A|C)P(B|C) 

Now we are ready to talk about Naive Bayes Classifiers!

Naive Bayes Classifiers

Suppose we have a vector X of n features and we want to determine the class of that vector from a set of k classes y1, y2,...,yk. For example, if we want to determine whether it'll rain today or not.

We have two possible classes (k = 2): rain, not rain, and the length of the vector of features might be 3 (n = 3).

The first feature might be whether it is cloudy or sunny, the second feature could be whether humidity is high or low, and the third feature would be whether the temperature is high, medium, or low.

So, these could be possible feature vectors.

Our task is to determine whether it'll rain or not, given the weather features.

After learning about conditional probabilities, it seems natural to approach the problem by trying to calculate the prob of raining given the features:

R = P(Rain | Cloudy, H_High, T_Low) NR = P(NotRain | Cloudy, H_High, T_Low) 

If R > NR we answer that it'll rain, otherwise we say it won't.

In general, if we have k classes y1, y2, ..., yk, and a vector of n features X = , we want to find the class yi that maximizes

P(yi | X1, X2, ..., Xn) = P(X1, X2,..., Xn, yi)/P(X1, X2, ..., Xn) 

Notice that the denominator is constant and it does not depend on the class yi. So, we can ignore it and just focus on the numerator.

In a previous section, we saw how to calculate P(X1, X2,..., Xn, yi) by decomposing it in a product of conditional probabilities (the ugly formula):

P(X1, X2,..., Xn, yi) = P(X1 | X2,..., Xn, yi)P(X2 | X3,..., Xn, yi)...P(Xn | yi)P(yi) 

Assuming all the features Xi are independent and using Bayes's Theorem, we can calculate the conditional probability as follows:

P(yi | X1, X2,..., Xn) = P(X1, X2,..., Xn | yi)P(yi)/P(X1, X2, ..., Xn) = P(X1 | yi)P(X2 | yi)...P(Xn | yi)P(yi)/P(X1, X2, ..., Xn) 

And we just need to focus on the numerator.

By finding the class yi that maximizes the previous expression, we are classifying the input vector. But, how can we get all those probabilities?

How to calculate the probabilities

When solving these kind of problems we need to have a set of previously classified examples.

For instance, in the problem of guessing whether it'll rain or not, we need to have several examples of feature vectors and their classifications that they would be obtained from past weather forecasts.

So, we would have something like this:

...  -> Rain  -> Not Rain  -> Not Rain ... 

Suppose we need to classify a new vector . We need to calculate:

P(Rain | Cloudy, H_Low, T_Low) = P(Cloudy | H_Low, T_Low, Rain)P(H_Low | T_Low, Rain)P(T_Low | Rain)P(Rain)/P(Cloudy, H_Low, T_Low) 

We get the previous expression by applying the definition of conditional probability and the chain rule. Remember we only need to focus on the numerator so we can drop the denominator.

We also need to calculate the prob for NotRain, but we can do this in a similar way.

We can find P(Rain) = # Rain/Total. That means counting the entries in the dataset that are classified with Rain and dividing that number by the size of the dataset.

To calculate P(Cloudy | H_Low, T_Low, Rain) we need to count all the entries that have the features H_Low, T_Low and Cloudy. Those entries also need to be classified as Rain. Then, that number is divided by the total amount of data. We calculate the rest of the factors of the formula in a similar fashion.

Making those computations for every possible class is very expensive and slow. So we need to make assumptions about the problem that simplify the calculations.

Naive Bayes Classifiers assume that all the features are independent from each other. So we can rewrite our formula applying Bayes's Theorem and assuming independence between every pair of features:

P(Rain | Cloudy, H_Low, T_Low) = P(Cloudy | Rain)P(H_Low | Rain)P(T_Low | Rain)P(Rain)/P(Cloudy, H_Low, T_Low) 

Now we calculate P(Cloudy | Rain) counting the number of entries that are classified as Rain and were Cloudy.

The algorithm is called Naive because of this independence assumption. There are dependencies between the features most of the time. We can't say that in real life there isn't a dependency between the humidity and the temperature, for example. Naive Bayes Classifiers are also called Independence Bayes, or Simple Bayes.

The general formula would be:

P(yi | X1, X2, ..., Xn) = P(X1 | yi)P(X2 | yi)...P(Xn | yi)P(yi)/P(X1, X2, ..., Xn) 

Remember you can get rid of the denominator. We only calculate the numerator and answer the class that maximizes it.

Now, let's implement our NBC and let's use it in a problem.

Let's code!

I will show you an implementation of a simple NBC and then we'll see it in practice.

The problem we are going to solve is determining whether a passenger on the Titanic survived or not, given some features like their gender and their age.

Here you can see the implementation of a very simple NBC:

class NaiveBayesClassifier: def __init__(self, X, y): ''' X and y denotes the features and the target labels respectively ''' self.X, self.y = X, y self.N = len(self.X) # Length of the training set self.dim = len(self.X[0]) # Dimension of the vector of features self.attrs = [[] for _ in range(self.dim)] # Here we'll store the columns of the training set self.output_dom = {} # Output classes with the number of ocurrences in the training set. In this case we have only 2 classes self.data = [] # To store every row [Xi, yi] for i in range(len(self.X)): for j in range(self.dim): # if we have never seen this value for this attr before, # then we add it to the attrs array in the corresponding position if not self.X[i][j] in self.attrs[j]: self.attrs[j].append(self.X[i][j]) # if we have never seen this output class before, # then we add it to the output_dom and count one occurrence for now if not self.y[i] in self.output_dom.keys(): self.output_dom[self.y[i]] = 1 # otherwise, we increment the occurrence of this output in the training set by 1 else: self.output_dom[self.y[i]] += 1 # store the row self.data.append([self.X[i], self.y[i]]) def classify(self, entry): solve = None # Final result max_arg = -1 # partial maximum for y in self.output_dom.keys(): prob = self.output_dom[y]/self.N # P(y) for i in range(self.dim): cases = [x for x in self.data if x[0][i] == entry[i] and x[1] == y] # all rows with Xi = xi n = len(cases) prob *= n/self.N # P *= P(Xi = xi) # if we have a greater prob for this output than the partial maximum... if prob > max_arg: max_arg = prob solve = y return solve 

Here, we assume every feature has a discrete domain. That means they take a value from a finite set of possible values.

The same happens with classes. Notice that we store some data in the __init__ method so we don't need to repeat some operations. The classification of a new entry is carried on in the classify method.

This is a simple example of an implementation. In real world applications you don't need (and is better if you don't make) your own implementation. For example, the sklearn library in Python contains several good implementations of NBC's.

Notice how easy it is to implement it!

Now, let's apply our new classifier to solve a problem. We have a dataset with the description of 887 passengers on the Titanic. We also can see whether a given passenger survived the tragedy or not.

So our task is to determine if another passenger that is not included in the training set made it or not.

In this example, I'll be using the pandas library to read and process the data. I don't use any other tool.

The data is stored in a file called titanic.csv, so the first step is to read the data and get an overview of it.

import pandas as pd data = pd.read_csv('titanic.csv') print(data.head()) 

The output is:

Survived Pclass Name \ 0 0 3 Mr. Owen Harris Braund 1 1 1 Mrs. John Bradley (Florence Briggs Thayer) Cum... 2 1 3 Miss. Laina Heikkinen 3 1 1 Mrs. Jacques Heath (Lily May Peel) Futrelle 4 0 3 Mr. William Henry Allen Sex Age Siblings/Spouses Aboard Parents/Children Aboard Fare 0 male 22.0 1 0 7.2500 1 female 38.0 1 0 71.2833 2 female 26.0 0 0 7.9250 3 female 35.0 1 0 53.1000 4 male 35.0 0 0 8.0500 

Notice we have the Name of each passenger. We won't use that feature for our classifier because it is not significant for our problem. We'll also get rid of the Fare feature because it is continuous and our features need to be discrete.

There are Naive Bayes Classifiers that support continuous features. For example, the Gaussian Naive Bayes Classifier.

y = list(map(lambda v: 'yes' if v == 1 else 'no', data['Survived'].values)) # target values as string # We won't use the 'Name' nor the 'Fare' field X = data[['Pclass', 'Sex', 'Age', 'Siblings/Spouses Aboard', 'Parents/Children Aboard']].values # features values 

Then, we need to separate our data set in a training set and a validation set. The later is used to validate how well our algorithm is doing.

print(len(y)) # >> 887 # We'll take 600 examples to train and the rest to the validation process y_train = y[:600] y_val = y[600:] X_train = X[:600] X_val = X[600:] 

We create our NBC with the training set and then classify every entry in the validation set.

We measure the accuracy of our algorithm by dividing the number of entries it correctly classified by the total number of entries in the validation set.

## Creating the Naive Bayes Classifier instance with the training data nbc = NaiveBayesClassifier(X_train, y_train) total_cases = len(y_val) # size of validation set # Well classified examples and bad classified examples good = 0 bad = 0 for i in range(total_cases): predict = nbc.classify(X_val[i]) # print(y_val[i] + ' --------------- ' + predict) if y_val[i] == predict: good += 1 else: bad += 1 print('TOTAL EXAMPLES:', total_cases) print('RIGHT:', good) print('WRONG:', bad) print('ACCURACY:', good/total_cases) 

The output:

TOTAL EXAMPLES: 287 RIGHT: 200 WRONG: 87 ACCURACY: 0.6968641114982579 

It's not great but it's something. We can get about a 10% accuracy improvement if we get rid of other features like Siblings/Spouses Aboard and Parents/Children Aboard.

You can see a notebook with the code and the dataset here

Conclusions

Today, we have neural networks and other complex and expensive ML algorithms all over the place.

NBCs are very simple algorithms that let us achieve good results in some classification problems without needing a lot of resources. They also scale very well, which means we can add a lot more features and the algorithm will still be fast and reliable.

Even in a case where NBCs were not a good fit for the problem we were trying to solve, they might be very useful as a baseline.

We could first try to solve the problem using an NBC with a few lines of code and little effort. Then we could try to achieve better results with more complex and expensive algorithms.

This process can save us a lot of time and gives us an immediate feedback about whether complex algorithms are really worth it for our task.

In this article you read about conditional probabilities, independence, and Bayes's Theorem. Those are the Mathematical concepts behind Naive Bayes Classifiers.

After that, we saw a simple implementation of an NBC and solved the problem of determining whether a passenger on the Titanic survived the accident.

I hope you found this article useful. You can read about Computer Science related topics in my personal blog and by following me on Twitter.