'null'の迅速かつ徹底的なガイド:それが何であるか、そしてそれをどのように使用すべきか

の意味はnull何ですか?どのようにnull実装されていますか?するときは、使用する必要がありnull、あなたのソースコードで、あなたがすべきときではない、それを使うのか?

前書き

nullは多くのプログラミング言語の基本的な概念です。これらの言語で書かれたあらゆる種類のソースコードに遍在しています。したがって、のアイデアを完全に把握することが不可欠ですnull。そのセマンティクスと実装を理解する必要がありnull、ソースコードでの使用方法を知る必要があります。

プログラマーフォーラムのコメントは、との少しの混乱を明らかにすることがありますnull。一部のプログラマーは、を完全に回避しようとさえしnullます。彼らはそれを「百万ドルの間違い」と考えているので、の発明者であるトニー・ホーアによって造られた用語ですnull

簡単な例を次に示します。アリスがをemail_address指しているとしnullます。これは何を意味するのでしょうか?アリスがメールアドレスを持っていないということですか?それとも彼女のメールアドレスが不明ですか?それともそれは秘密ですか?それとも、単にemail_address「未定義」または「初期化されていない」という意味ですか?どれどれ。この記事を読んだ後、誰もがためらうことなくそのような質問に答えることができるはずです。

注:この記事はプログラミング言語に依存しません—可能な限り。説明は一般的であり、特定の言語に結び付けられていません。に関する具体的なアドバイスについては、プログラミング言語のマニュアルを参照してくださいnull。ただし、この記事には、Javaで示されているいくつかの簡単なソースコードの例が含まれています。しかし、それらをあなたの好きな言語に翻訳することは難しくありません。

実行時の実装

の意味を説明する前に、実行時にメモリに実装されるnull方法を理解する必要がありnullます。

注:の典型的な実装を見ていきますnull。特定の環境での実際の実装は、プログラミング言語とターゲット環境によって異なり、ここに示されている実装とは異なる場合があります。

次のソースコード命令があるとします。

String name = "Bob";

ここでは、文字列を指すString識別子nameを使用して、型の変数を宣言します"Bob"

このコンテキストでは、「ポイント」と言うことが重要です。これは、参照型値型ではなく)を使用することを前提としているためです。これについては後で詳しく説明します。

物事を単純にするために、次の仮定を行います。

  • 上記の命令は、16ビットのアドレス空間を持つ16ビットのCPUで実行されます。
  • 文字列はUTF-16としてエンコードされます。それらは0で終了します(CまたはC ++のように)。

次の図は、上記の命令を実行した後のメモリの抜粋を示しています。

上の図のメモリアドレスは任意に選択されており、ここでの説明とは関係ありません。

ご覧のとおり、文字列"Bob"はアドレスB000に格納され、4つのメモリセルを占有します。

変数nameはアドレスA0A1にあります。A0A1の内容はB000で、これは文字列の開始メモリ位置です"Bob"。それが私たちが言う理由です:変数はをname指し"Bob"ます。

ここまでは順調ですね。

ここで、上記の命令を実行した後、次を実行するとします。

name = null;

ここでをname指しnullます。

そして、これはメモリ内の新しい状態です。

"Bob"まだメモリに保存されている文字列については何も変更されていないことがわかります。

注:"Bob"ガベージコレクターがあり、他の参照ポイントがない場合、文字列を格納するために必要なメモリは後で解放される可能性がありますが"Bob"、これは説明では関係ありません。

重要なのは、A0A1(変数の値を表すname)の内容が0000name"Bob"なったことです。したがって、変数はもう指していません。値0(ゼロのすべてのビット)は、を表すためにメモリで使用される一般的な値nullです。これは、に関連付けられた値nameないことを意味ます。また、データがない、または単にデータがない、と考えることもできます

注:を示すために使用される実際のメモリー値nullは、実装固有です。たとえば、Java仮想マシン仕様はセクション2.4の最後に記載されています。参照型と値:」

Java仮想マシン仕様では、具体的な値のエンコードは義務付けられていませんnull

覚えておいてください:

If a reference points to null, it simply means that there isno value associated with it.

Technically speaking, the memory location assigned to the reference contains the value 0 (all bits at zero), or any other value that denotes null in the given environment.

Performance

As we learned in the previous section, operations involving null are extremely fast and easy to perform at run-time.

There are only two kinds of operations:

  • Initialize or set a reference to null (e.g. name = null): The only thing to do is to change the content of one memory cell (e.g. setting it to 0).
  • Check if a reference points to null (e.g. if name == null): The only thing to do is to check if the memory cell of the reference holds the value 0.

Remember:

Operations on null are exceedingly fast and cheap.

Reference vs Value Types

So far we assumed working with reference types. The reason for this is simple: null doesn't exist for value types.

Why?

As we have seen previously, a reference is a pointer to a memory-address that stores a value (e.g. a string, a date, a customer, whatever). If a reference points to null, then no value is associated with it.

On the other hand, a value is, by definition, the value itself. There is no pointer involved. A value type is stored as the value itself. Therefore the concept of null doesn't exist for value types.

The following picture demonstrates the difference. On the left side you can see again the memory in case of variable name being a reference pointing to "Bob". The right side shows the memory in case of variable name being a value type.

As we can see, in case of a value type, the value itself is directly stored at the address A0A1 which is associated with variable name.

There would be much more to say about reference versus value types, but this is out of the scope of this article. Please note also that some programming languages support only reference types, others support only value types, and some (e.g. C# and Java) support both of them.

Remember:

The concept of null exists only for reference types. It doesn't exist for value types.

Meaning

Suppose we have a type person with a field emailAddress. Suppose also that, for a given person which we will call Alice, emailAddress points to null.

What does this mean? Does it mean that Alice doesn’t have an email address? Not necessarily.

As we have seen already, what we can assert is that no value is associated with emailAddress.

But why is there no value? What is the reason of emailAddress pointing to null? If we don't know the context and history, then we can only speculate. The reason for nullcould be:

Alice doesn’t have an email address. Or…

Alice has an email address, but:

  • it has not yet been entered in the database
  • it is secret (unrevealed for security reasons)
  • there is a bug in a routine that creates a person object without setting field emailAddress
  • and so on.

In practice we often know the application and context. We intuitively associate a precise meaning to null. In a simple and flawless world, null would simply mean that Alice actually doesn't have an email address.

When we write code, the reason why a reference points to null is often irrelevant. We just check for null and take appropriate actions. For example, suppose that we have to write a loop that sends emails for a list of persons. The code (in Java) could look like this:

for ( Person person: persons ) { if ( person.getEmailAddress() != null ) { // code to send email } else { logger.warning("No email address for " + person.getName()); }}

In the above loop we don’t care about the reason for null. We just acknowledge the fact that there is no email address, log a warning, and continue.

Remember:

If a reference points to null then it always means that there isno value associated with it.

In most cases, null has a more specific meaning that depends on the context.

Why is it null?

Sometimes it is important to know why a reference points to null.

Consider the following function signature in a medical application:

List getAllergiesOfPatient ( String patientId )

In this case, returning null (or an empty list) is ambiguous. Does it mean that the patient doesn't have allergies, or does it mean that an allergy test has not yet been performed? These are two semantically very different cases that must be handled differently. Or else the outcome might be life-threatening.

Just suppose that the patient has allergies, but an allergy test has not yet been done and the software tells the doctor that 'there are no allergies'. Hence we need additional information. We need to know why the function returns null.

It would be tempting to say: Well, to differentiate, we return null if an allergy test has not yet been performed, and we return an empty list if there are no allergies.

DON’T DO THIS!

This is bad data design for multiple reasons.

The different semantics for returning null versus returning an empty list would need to be well documented. And as we all know, comments can be wrong (i.e. inconsistent with the code), outdated, or they might even be inaccessible.

There is no protection for misuses in client code that calls the function. For example, the following code is wrong, but it compiles without errors. Moreover, the error is difficult to spot for a human reader. We can’t see the error by just looking at the code without considering the comment of getAllergiesOfPatient:

List allergies = getAllergiesOfPatient ( "123" ); if ( allergies == null ) { System.out.println ( "No allergies" ); // <-- WRONG!} else if ( allergies.isEmpty() ) { System.out.println ( "Test not done yet" ); // <-- WRONG!} else { System.out.println ( "There are allergies" );}

The following code would be wrong too:

List allergies = getAllergiesOfPatient ( "123" );if ( allergies == null || allergies.isEmpty() ) { System.out.println ( "No allergies" ); // <-- WRONG!} else { System.out.println ( "There are allergies" );}

If the null/empty-logic of getAllergiesOfPatient changes in the future, then the comment needs to be updated, as well as all client code. And there is no protection against forgetting any one of these changes.

If, later on, there is another case to be distinguished (e.g. an allergy test is pending — the results are not yet available), or if we want to add specific data for each case, then we are stuck.

So the function needs to return more information than just a list.

There are different ways to do this, depending on the programming language we use. Let’s have a look at a possible solution in Java.

In order to differentiate the cases, we define a parent type AllergyTestResult, as well as three sub-types that represent the three cases (NotDone, Pending, and Done):

interface AllergyTestResult {}
interface NotDoneAllergyTestResult extends AllergyTestResult {}
interface PendingAllergyTestResult extends AllergyTestResult { public Date getDateStarted();}
interface DoneAllergyTestResult extends AllergyTestResult { public Date getDateDone(); public List getAllergies(); // null if no allergies // non-empty if there are // allergies}

As we can see, for each case we can have specific data associated with it.

Instead of simply returning a list, getAllergiesOfPatient now returns an AllergyTestResult object:

AllergyTestResult getAllergiesOfPatient ( String patientId )

Client code is now less error-prone and looks like this:

AllergyTestResult allergyTestResult = getAllergiesOfPatient("123");
if (allergyTestResult instanceof NotDoneAllergyTestResult) { System.out.println ( "Test not done yet" ); } else if (allergyTestResult instanceof PendingAllergyTestResult) { System.out.println ( "Test pending" ); } else if (allergyTestResult instanceof DoneAllergyTestResult) { List list = ((DoneAllergyTestResult) allergyTestResult).getAllergies(); if (list == null) { System.out.println ( "No allergies" ); } else if (list.isEmpty()) { assert false; } else { System.out.println ( "There are allergies" ); }} else { assert false;}

Note: If you think that the above code is quite verbose and a bit hard to write, then you are not alone. Some modern languages allow us to write conceptually similar code much more succinctly. And null-safe languages distinguish between nullable and non-nullable values in a reliable way at compile-time — there is no need to comment the nullability of a reference or to check whether a reference declared to be non-null has accidentally been set to null.

Remember:

If we need to know why there is no value associated with a reference, then additional data must be provided to differentiate the possible cases.

Initialization

Consider the following instructions:

String s1 = "foo";String s2 = null;String s3;

The first instruction declares a String variable s1 and assigns it the value "foo".

The second instruction assigns null to s2.

The more interesting instruction is the last one. No value is explicitly assigned to s3. Hence, it is reasonable to ask: What is the state of s3 after its declaration? What will happen if we write s3 to the OS output device?

It turns out that the state of a variable (or class field) declared without assigning a value depends on the programming language. Moreover, each programming language might have specific rules for different cases. For example, different rules apply for reference types and value types, static and non-static members of a class, global and local variables, and so on.

As far as I know, the following rules are typical variations encountered:

  • It is illegal to declare a variable without also assigning a value
  • There is an arbitrary value stored in s3, depending on the memory content at the time of execution - there is no default value
  • A default value is automatically assigned to s3. In case of a reference type, the default value is null. In case of a value type, the default value depends on the variable’s type. For example 0 for integer numbers, false for a boolean, and so on.
  • the state of s3 is 'undefined'
  • the state of s3 is 'uninitialized', and any attempt to use s3 results in a compile-time error.

The best option is the last one. All other options are error-prone and/or impractical — for reasons we will not discuss here, because this article focuses on null.

As an example, Java applies the last option for local variables. Hence, the following code results in a compile-time error at the second line:

String s3;System.out.println ( s3 );

Compiler output:

error: variable s3 might not have been initialized

Remember:

If a variable is declared, but no explicit value is assigned to it, then it’s state depends on several factors which are different in different programming languages.

In some languages, null is the default value for reference types.

When to Use null (And When Not to Use It)

The basic rule is simple: null should only be allowed when it makes sense for an object reference to have 'no value associated with it'. (Note: an object reference can be a variable, constant, property (class field), input/output argument, and so on.)

For example, suppose type person with fields name and dateOfFirstMarriage:

interface Person { public String getName(); public Date getDateOfFirstMarriage();}

Every person has a name. Hence it doesn’t make sense for field name to have 'no value associated with it'. Field name is non-nullable. It is illegal to assign null to it.

On the other hand, field dateOfFirstMarriage doesn't represent a required value. Not everyone is married. Hence it makes sense for dateOfFirstMarriage to have 'no value associated with it'. Therefore dateOfFirstMarriage is a nullable field. If a person's dateOfFirstMarriage field points to null then it simply means that this person has never been married.

Note: Unfortunately most popular programming languages don’t distinguish between nullable and non-nullable types. There is no way to reliably state that null can never be assigned to a given object reference. In some languages it is possible to use annotations, such as the non-standard annotations @Nullable and @NonNullable in Java. Here is an example:

interface Person { public @Nonnull String getName(); public @Nullable Date getDateOfFirstMarriage();}

However, such annotations are not used by the compiler to ensure null-safety. Still, they are useful for the human reader, and they can be used by IDEs and tools such as static code analyzers.

It is important to note that null should not be used to denote error conditions.

Consider a function that reads configuration data from a file. If the file doesn’t exist or is empty, then a default configuration should be returned. Here is the function’s signature:

public Config readConfigFromFile ( File file )

What should happen in case of a file read error?

Simply return null?

NO!

Each language has it’s own standard way to signal error conditions and provide data about the error, such as a description, type, stack trace, and so on. Many languages (C#, Java, etc.) use an exception mechanism, and exceptions should be used in these languages to signal run-time errors. readConfigFromFile should not return null to denote an error. Instead, the function's signature should be changed in order to make it clear that the function might fail:

public Config readConfigFromFile ( File file ) throws IOException

Remember:

Allow null only if it makes sense for an object reference to have 'no value associated with it'.

Don’t use null to signal error conditions.

Null-safety

Consider the following code:

String name = null;int l = name.length();

実行時に、を指す参照のメソッドを実行しようとするため、上記のコードは悪名高いnullポインタエラーになりnullます。たとえば、C#ではaNullReferenceExceptionがスローされ、JavaではaがスローされますNullPointerException

nullポインタエラーは厄介です。

これは多くのソフトウェアアプリケーションで最も頻繁に発生するバグであり、ソフトウェア開発の歴史の中で数え切れないほどのトラブルの原因となっています。の発明者であるTonyHoareは、nullこれを「10億ドルの間違い」と呼んでいます。

しかし、Tony Hoare(1980年にチューリング賞を受賞し、Quicksortアルゴリズムの発明者)も、彼のスピーチで解決策のヒントを示しています。

最近のプログラミング言語では、null以外の参照の宣言が導入されています。これは私が1965年に拒否した解決策です。

Contrary to some common belief, the culprit is not null per se. The problem is the lack of support for null handling in many programming languages. For example, at the time of writing (May 2018), none of the top ten languages in the Tiobe index natively differentiates between nullable and non-nullable types.

Therefore, some new languages provide compile-time null-safety and specific syntax for conveniently handling null in source code. In these languages, the above code would result in a compile-time error. Software quality and reliability increases considerably, because the null pointer error delightfully disappears.

Null-safety is a fascinating topic that deserves its own article.

Remember:

Whenever possible, use a language that supports compile-time null-safety.

Note: Some programming languages (mostly functional programming languages like Haskell) don’t support the concept of null. Instead, they use the Maybe/Optional Patternto represent the ‘absence of a value’. The compiler ensures that the ‘no value’ case is handled explicitly. Hence, null pointer errors cannot occur.

Summary

Here is a summary of key points to remember:

  • If a reference points to null, it always means that there is no value associated with it.
  • In most cases, null has a more specific meaning that depends on the context.
  • If we need to know why there is no value associated with a reference, then additional data must be provided to differentiate the possible cases.
  • Allow null only if it makes sense for an object reference to have 'no value associated with it'.
  • Don’t use null to signal error conditions.
  • The concept of null exists only for reference types. It doesn't exist for value types.
  • In some languages null is the default value for reference types.
  • null operations are exceedingly fast and cheap.
  • Whenever possible, use a language that supports compile-time-null-safety.